IFF Update: COVID-19

Dear Friends,

At Ian’s Friends Foundation, we talk a lot about survivors and positivity especially in the face of insurmountable obstacles. Right now as we take on the obstacle of Covid-19, we are focusing on our entire community to ensure that there are many survivors. We do this united, just as we are united in our belief that IFF will one day find a cure for pediatric brain tumors. Perhaps one positive that we can take from our current situation is how we have all come together regardless of backgrounds and beliefs. We see a global community working together to conquer and beat this virus, ensuring that we don’t just survive, but thrive!

It is not so different from what our mission is at Ian’s Friends Foundation. We strive to bring together the best and brightest to find a cure.

As an update, over the past few weeks many of our labs have temporarily slowed down, even though pediatric brain cancer has not. During these challenging times, we will do our absolute best to keep the research moving forward. Our hearts have been touched and our spirits lifted by those of you in the past few weeks who have gifted us with generous donations to ensure our research continues- Thank You!

For those families whom, amongst everything else, have a child battling with a brain tumor diagnosis, we are here for you, forever and always. Our family and our foundation are always just a phone call or email away.

To our doctors and researchers, our donors, our strong survivors and their families, and the community as a whole: please know that we love you, we are truly grateful for you, and we will get through this as a community by working together and leaning on each other.

Please stay healthy and please stay home.

Until There’s a Cure.
With Love,
The Board of Ian’s Friends Foundation

Long-term goal is to improve understanding of tumor metabolism to design more effective therapies.
Long-term goal is to improve understanding of tumor metabolism to design more effective therapies.
New biorepository will provide the technology to grow and store cancer cells for use in brain tumor research.
New biorepository will provide the technology to grow and store cancer cells for use in brain tumor research.
Together, these Atlanta institutions pioneer the use of nanotechnology to gauge tumor size, stop tumor growth, and shrink tumors.
Together, these Atlanta institutions pioneer the use of nanotechnology to gauge tumor size, stop tumor growth, and shrink tumors.
Research focused on uncovering the mechanisms by which gene fusions contribute to tumor formation in pediatric low grade gliomas.
Research focused on uncovering the mechanisms by which gene fusions contribute to tumor formation in pediatric low grade gliomas.
Objective is to determine if an electrical stimulations regimen can arrest the division of dividing brain tumor cells.
Objective is to determine if an electrical stimulations regimen can arrest the division of dividing brain tumor cells.
Working to find biomarkers for brain tumors to make the diagnosis of tumor types easier, track their growth or even, no recurrence.
Working to find biomarkers for brain tumors to make the diagnosis of tumor types easier, track their growth or even, no recurrence.
Research establishing the feasibility of using interstitial infusion for treating pediatric brain stem gliomas. FDA approved clinical trial underway.
Research establishing the feasibility of using interstitial infusion for treating pediatric brain stem gliomas. FDA approved clinical trial underway.
Research focused on proteins which are active in pediatric low-grade gliomas. From this research, NYU hopes to better select molecular targeted drugs directed at these pathways.
Research focused on proteins which are active in pediatric low-grade gliomas. From this research, NYU hopes to better select molecular targeted drugs directed at these pathways.
Research focused on using new brain imaging techniques to improve diagnosis, prognosis and treatment of pediatric brain tumors.
Research focused on using new brain imaging techniques to improve diagnosis, prognosis and treatment of pediatric brain tumors.
Partnership between a physician and research scientist is examining innovative drug delivery methods for children with brain tumors.
Partnership between a physician and research scientist is examining innovative drug delivery methods for children with brain tumors.
This groundbreaking project could be the first step for the development of a variety of attractive modalities targeting therapeutic approaches beyond immunotherapy.
This groundbreaking project could be the first step for the development of a variety of attractive modalities targeting therapeutic approaches beyond immunotherapy.
Discovery regarding cancer cells' ability to hijack the brain's nerves could lead to new treatment avenues for aggressive brain tumors.
Discovery regarding cancer cells' ability to hijack the brain's nerves could lead to new treatment avenues for aggressive brain tumors.
Developing a strategy to ensure rapid translation of new drug candidates into clinical trials of medulloblastomas is a collaborative effort.
Developing a strategy to ensure rapid translation of new drug candidates into clinical trials of medulloblastomas is a collaborative effort.
University of Michigan Researchers aim to treat Pediatric Brain Tumors through the combination of Gene and Immune Therapy.
University of Michigan Researchers aim to treat Pediatric Brain Tumors through the combination of Gene and Immune Therapy.
Researchers at Johns Hopkins All Children’s and Johns Hopkins University hypothesize that a group of lncRNAs, including lncRNA HLX2-7, are key molecular signatures (biomarkers) and therapeutic targets for Group III medulloblastoma in children.
Researchers at Johns Hopkins All Children’s and Johns Hopkins University hypothesize that a group of lncRNAs, including lncRNA HLX2-7, are key molecular signatures (biomarkers) and therapeutic targets for Group III medulloblastoma in children.
Scientists work to establish a new system for targeting oncogenic mutations in pediatric brain tumors.
Scientists work to establish a new system for targeting oncogenic mutations in pediatric brain tumors.
Through a new collaboration between Duke and UNC Chapel Hill, our team is working on a radical new approach that combines living tissue brain slices with patient biopsies to recapitulate the clinical brain cancer phenotype.
Through a new collaboration between Duke and UNC Chapel Hill, our team is working on a radical new approach that combines living tissue brain slices with patient biopsies to recapitulate the clinical brain cancer phenotype.