UNIVERSITY OF TEXAS HEALTH SCIENCE CENTER AT HOUSTON

IFF began funding two projects at the University of Texas following 2017’s WhatIFF Symposium. The projects are led by David Sandberg MD, Professor and Director of Pediatric Neurosurgery at the McGovern Medical School and The University of Texas MD Anderson Cancer Center, and Rachael Sirianni, PhD of the University of Texas Health Science Center at Houston. Dr. Sirianni was at Barrow Neurological Institute and met Dr. Sandberg as a result of the WhatIFF Symposium. The two doctors began working together after meeting at the event.

  • Dr. Sandberg is researching innovative treatments focused on local drug delivery directly into the fourth ventricle of the brain. This research is a novel treatment approach for malignant tumors of the posterior fossa.
  • Dr. Sirianni is researching innovative methods for drug treatment delivery in patients with medulloblastoma (MB,) the most common form of malignant brain tumors in children. Through this research, Dr. Sirianni hopes to identify safer and more effective drug delivery methods that will lead to better long-term outcomes for patients.
Long-term goal is to improve understanding of tumor metabolism to design more effective therapies.
Long-term goal is to improve understanding of tumor metabolism to design more effective therapies.
New biorepository will provide the technology to grow and store cancer cells for use in brain tumor research.
New biorepository will provide the technology to grow and store cancer cells for use in brain tumor research.
Together, these Atlanta institutions pioneer the use of nanotechnology to gauge tumor size, stop tumor growth, and shrink tumors.
Together, these Atlanta institutions pioneer the use of nanotechnology to gauge tumor size, stop tumor growth, and shrink tumors.
Research focused on uncovering the mechanisms by which gene fusions contribute to tumor formation in pediatric low grade gliomas.
Research focused on uncovering the mechanisms by which gene fusions contribute to tumor formation in pediatric low grade gliomas.
Objective is to determine if an electrical stimulations regimen can arrest the division of dividing brain tumor cells.
Objective is to determine if an electrical stimulations regimen can arrest the division of dividing brain tumor cells.
Working to find biomarkers for brain tumors to make the diagnosis of tumor types easier, track their growth or even, no recurrence.
Working to find biomarkers for brain tumors to make the diagnosis of tumor types easier, track their growth or even, no recurrence.
Research establishing the feasibility of using interstitial infusion for treating pediatric brain stem gliomas. FDA approved clinical trial underway.
Research establishing the feasibility of using interstitial infusion for treating pediatric brain stem gliomas. FDA approved clinical trial underway.
Research focused on proteins which are active in pediatric low-grade gliomas. From this research, NYU hopes to better select molecular targeted drugs directed at these pathways.
Research focused on proteins which are active in pediatric low-grade gliomas. From this research, NYU hopes to better select molecular targeted drugs directed at these pathways.
Research focused on using new brain imaging techniques to improve diagnosis, prognosis and treatment of pediatric brain tumors.
Research focused on using new brain imaging techniques to improve diagnosis, prognosis and treatment of pediatric brain tumors.
Partnership between a physician and research scientist is examining innovative drug delivery methods for children with brain tumors.
Partnership between a physician and research scientist is examining innovative drug delivery methods for children with brain tumors.
This groundbreaking project could be the first step for the development of a variety of attractive modalities targeting therapeutic approaches beyond immunotherapy.
This groundbreaking project could be the first step for the development of a variety of attractive modalities targeting therapeutic approaches beyond immunotherapy.
Discovery regarding cancer cells' ability to hijack the brain's nerves could lead to new treatment avenues for aggressive brain tumors.
Discovery regarding cancer cells' ability to hijack the brain's nerves could lead to new treatment avenues for aggressive brain tumors.
Developing a strategy to ensure rapid translation of new drug candidates into clinical trials of medulloblastomas is a collaborative effort.
Developing a strategy to ensure rapid translation of new drug candidates into clinical trials of medulloblastomas is a collaborative effort.
University of Michigan Researchers aim to treat Pediatric Brain Tumors through the combination of Gene and Immune Therapy.
University of Michigan Researchers aim to treat Pediatric Brain Tumors through the combination of Gene and Immune Therapy.
Researchers at Johns Hopkins All Children’s and Johns Hopkins University hypothesize that a group of lncRNAs, including lncRNA HLX2-7, are key molecular signatures (biomarkers) and therapeutic targets for Group III medulloblastoma in children.
Researchers at Johns Hopkins All Children’s and Johns Hopkins University hypothesize that a group of lncRNAs, including lncRNA HLX2-7, are key molecular signatures (biomarkers) and therapeutic targets for Group III medulloblastoma in children.
Scientists work to establish a new system for targeting oncogenic mutations in pediatric brain tumors.
Scientists work to establish a new system for targeting oncogenic mutations in pediatric brain tumors.
Through a new collaboration between Duke and UNC Chapel Hill, our team is working on a radical new approach that combines living tissue brain slices with patient biopsies to recapitulate the clinical brain cancer phenotype.
Through a new collaboration between Duke and UNC Chapel Hill, our team is working on a radical new approach that combines living tissue brain slices with patient biopsies to recapitulate the clinical brain cancer phenotype.